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Abstract-The quasi-static equations of motion are studied for bi-Iaminated fluid-saturated porous
media within the framework of non-phenomenological mixture theories. The flow-deformation
coupled behavior of the media is governed by Biot's theory for which all constituents are considered
compressible. The asymptotic analysis for a periodic microstructure with multiple scales, developed
by Hegemier and Murakami, is adopted to obtain the equations of equilibrium and mass con­
servation in a binary saturated porous medium. The multiscale analysis appears to be advantageous
for dealing with consolidation phenomena because it is capable of transforming a coupled, transient
problem into two decoupled, steady-state ones, Various models with different degrees of approxi­
mation are generated, and among them a theory for saturated rocks with a single joint system is
described. Mixture properties are expressed explicitly in terms of characteristics of intact and joint
material. The most distinctive feature of this model comes from the fact that some cross terms, that
have not been included in previous models, appear in the constitutive equations for fluid mass
change and fluid flux. These cross terms are physically understood because they simply take into
account effects occurring on the local level : the deformation-flow coupled phenomenon, the stress
continuity and displacement compatibility conditions. These novel results may have far-reaching
consequences for future theoretical modeling and experimental programs in two-phase fluid-filled
porous media.

I. INTRODUCTION

Study of fluid-saturated porous media is of great interest for geotechnicians, geophysicists,
geohydrologists and material scientists because a broad range of materials, such as soils,
rocks, biomaterials and sol-gel materials, fall into the category of porous media. One of
the main foci of study on these materials is the so-called consolidation problem, which is
concerned with the coupled behavior between fluid flow and solid deformation pattern, the
constituents being compressible or incompressible. The imposed excitations may be static
or dynamic. The one-dimensional theory of consolidation, proposed by Terzaghi [see, for
example, Terzaghi (1948)], and its three-dimensional counterpart, developed by Biot (1941),
provide a rational basis to interpret field and laboratory observations, predict performance
of structures and devices, and extrapolate science engineering experiences from one case to
another. As the classical theories were formulated to model homogeneous media, their
applicability to nonhomogeneous media has to be accompanied by a numerical procedure
like the finite element method.

Among many types of heterogeneity that may exist in a continuous medium, dis­
continuities such as fissures, cracks, veins and joints are found frequently. A typical medium
with discontinuities is a rock mass with joints. Large-scale discontinuities like bedding
surfaces and joints are characteristic features of rock masses. Because joints are generally
weaker and more permeable than an intact rock mass, careful consideration of them is of
vital importance in assessing slope stability, excavation design, mine drainage system design
and development of groundwater resources.

As early as the 1960s, joint elements were introduced (Goodman et al., 1968; Pande
et al., 1990) to model the sharp change of displacement across joint surfaces in the finite
element scheme. However, this direct modeling of discontinuities in a continuum is not
always feasible. For a finite element analysis, in order that the variations of displacement
and stress across the joints are accurately captured, it is necessary to employ several elements
between joints. If the problem domain contains a great number of joints, the total problem
size quickly escalates; such a rigorous analysis becomes impossible even with the aid of
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supercomputers, or may be possible but economically unaffordable in practice. The same
computational difficulties also arise if the boundary integral element method is used.

There is one alternative way to overcome the above mentioned numerical difficulties
and represent the complicated behavior of the jointed media correctly. It consists of
mathematically homogenizing the heterogeneous media to obtain motion and constitutive
equations for equivalent homogeneous media first and then using the homogenized equa­
tions to solve a boundary value problem with the boundary conditions originally imposed.
Adopting this continuum approach and dealing with flow problems in a medium that is
randomly jointed and undeformable, Barenblatt [see Barenblatt et ai., 1990)] developed, in
1960, a so-called double porosity model. This model, which is now widely used in petroleum
applications, allows consideration of the distinctive two-flow path, one through pores and
another by joints. As to deformation behavior, Singh (1973) derived constitutive equations
in an attempt to characterize regularly jointed rock masses from a continuum viewpoint in
which no fluid flow was considered. A theory for flow-deformation coupled behavior had
not been synthesized until very recently.

One of the early attempts to model the deformation-flow behaviour of jointed/
fractured fluid-saturated porous media was made by Aifantis and his co-workers (Wilson
and Aifantis, 1982; Khaled et ai., 1984; Beskos and Aifantis, 1986). Aifantis' model is
of a phenomenological type. The motion equations for a random medium are derived from
a macroscopic viewpoint; the coefficients involved in the constitutive equations have to be
determined by experiments. Although this model has been demonstrated to be physically
sound, mathematically correct and applicable in many practical situations (Cho et ai.,
1991; Elsworth and Bai, 1992), its use seems weakened by two limitations. First, the fact
that all the model coefficients must be experimentally determined limits, to some extent, its
predictive capability. In fact, the size of joint systems in rock mass may be so large that a
direct experimental evaluation of the overall behavior ofjointed media is impossible. Under
these circumstances, it is more practical to analytically evaluate the overall response of the
media based on individual knowledge about the intact and joint materials. In addition, as
basic equations are derived by making macroscopic assumptions, it is difficult to assess
their validity. Hence, it is desirable to study this problem from another theoretical viewpoint.

This paper aims at formulating a theory for a through-jointed saturated porous medium
from a non-phenomenological viewpoint, different from those presented in previous
research works. The material is considered essentially elastic and no inertia effects are
included. The overall behavior of the jointed media is determined explicitly in terms of the
local deformation and flow characteristics of joint and intact materials. Because no a priori
assumptions will be made on the macroscopic behavior of the media, it is expected that all
relevant effects are included and the model displays a complete picture of the mixture
behavior. In fact, it will be demonstrated that some important effects have previously been
discarded.

The model will be synthesized in a mixture representation in such a way that three
average quantities are assigned to a spatial position: solid skeleton displacement, pore
pressure and joint pressure. The general methodology developed by Hegemier, Murakami
and their collaborators (Murakami et ai., 1981; Murakami, 1985; Murakami and Hege­
mier, 1989; Murakami and Toledano, 1990) was followed for obtaining mixture equations.
The Hegemier-Murakami approach has been elaborated on in the past to study wave
propagation phenomena in composite materials. The method consists of the following three
main stages. First, the media under consideration are regularly periodic so one can choose
two distinctive length scales, the macroscopic wavelength and the dimension of periodic
cell. For these periodic media a multiscale representation is carried out. Second, a volume
average procedure is employed to obtain the motion and constitutive equations in the
average sense, from which new independent variables emerge. Third, due to the presence
of new variables, new equations are required which are synthesized from the modified
Reissner's variational principle. The trial fields necessary for this variational principle are
inferred from an asymptotic analysis. This non-phenomenological mixture theory has been
used to study composites with different geometries (sphere, cylinder and laminate) and the
results are encouraging in comparison with experimental observations.
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The Hegemier-Murakami method will be used because it takes into account the
dimension of periodic cell. It has been shown that such micro-dependence plays an impor­
tant role in modeling wave attenuation and dispersion phenomena in composites. The need
for including the micro-dependence even in a quasi-static consolidation problem will be
demonstrated in this paper. Although the above described method will be followed, there
exist some differences between previous research works and the present paper. The media
under study herein are fluid-saturated porous media instead of the nonporous solid
materials analysed before, so a theory for porous media such as Biot's formulation should
be used. In addition, some simplifications have to be made on the general framework
established in the previous works, because we want to obtain a theory consistent with
phenomenological models. Specifically, the high-order variables previously used will be
eliminated in a systematic way.

For the sake of simplicity in this work, a porous medium with a single persistent joint
system has been chosen. However, many conclusions drawn here are also valid for a medium
with more complicated discontinuities, for example, a medium with a non-persistent joint
system or simply a random medium. The present model is also easily extended to treat
nonlinear problems if it is adopted in an incremental form. The key contribution of this
paper on the subject is two fold. A mixture theory is presented for a special type of
nonhomogeneous fluid-saturated porous media that is of great interest in engineering
practice and, more importantly, some novel deformation-flow coupling phenomena in a
binary saturated porous medium are revealed.

The work is organized as follows. In the next section, Biot's basic equations are
presented and multiscale representation of the original problem is introduced. Although
this work is concerned with a particular model for jointed media, for the sake of clarity, a
general mixture model for bi-laminated media is first presented in Section 3. This model is
subsequently specialized to jointed media in Section 4, where final motion and constitutive
equations are obtained. We give a comprehensive discussion of the model in Section 5.
Indicial notation is used throughout the paper and the summation convention is employed
with bij being Kronecker's delta. Before closing the Introduction, it should be noted that,
in this paper, microscopic and macroscopic variables refer to the observed values of
those variables when the media are seen as homogeneous and heterogeneous, respectively.
Therefore, the distinction between the two types of variables is merely due to the different
length scales.

2. MULTISCALE REPRESENTATION OF BINARY MEDIA

The geometry of the problem is shown in Fig. I. We deal with a periodic medium. The
periodic cells are formed in the direction XI and have the dimension t. If L denotes the
macroscopic wavelength, the nondimensional periodicity for the cell is defined as

I
8 =z; (I)

The isolated central part of the cell is occupied by the fluid-saturated porous material I.
The region of the material I (or 2) is not interconnected with the other region of the same
material so one has to pass across the contact area from one material to another.

The motion equations for each fluid-saturated porous material are those presented by
Biot (1941). The motion of any material point depends exclusively upon its spatial position
and time, respectively denoted by x and t. For the sake of clarity, the inertia effect is
neglected but its consideration can be made in a straightforward manner. At this stage, two
special features may be noted in the media. Its geometrical array possesses special periodicity
measured by 8; the two materials within each cell are characterized by different mechanical
and hydraulic properties. So each field quantity is to be specialized by using the superindices
8 and (oc) where IX = 1,2. The static equilibrium equation and mass conservation equation
are then given by
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Fig. I. Schematic view of bi-Iaminated porous media at the macroscopic level.

a)tl' (x, t) ,j = 0

m(al'(x, t) +q}')r.(x, t),i = 0,

MATIRW. 1

(2)

where (Jji is the total stress tensor, ri1 is the rate of fluid mass change defined in an undeformed
state, qi is the fluid flux vector and x is the macrocoordinate. () and ( ).j denote the time
and spatial derivatives, respectively.

The motion eqns (2) are complemented by a set of constitutive equations for each
material. The first of them is the relation between the total stress-strain of the solid skeleton
and the pore pressure, as

(3)

where the deformation tensor is defined as

Cijkl is the stiffness tensor of the solid skeleton that may represent the nonlinearity and
anisotropy of the solid skeleton behavior. The scalar quantity ,<a) can be expressed as

(4)

in terms of the stiffness parameters for solid skeleton and unjacketed volume, K and K;
[see, for example, Rice and Cleary (1976)]. The second constitutive equation dictates the
fluid mass change in terms of the volumetric strain and pore pressure, given by
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where the constant '1(,) is expressed by

(.) = (cPr +...l_ cPr)(')
'1 K K' K"r s s
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(5)

(6)

in terms ofthe stiffness parameters for unjacketed pore and pore fluid K~and Kr, respectively.
In eqn (6), cPr is the porosity of each constituent, which must not be confused with the
volume fraction cP(,) that will be defined in the following section. The third and last
constitutive relation is established between the fluid flux and the pore pressure gradient,
known as Darcy's law:

(7)

The permeability tensor Kij') defined in eqn (7) may be related to the coefficients of per­
meability kij and the fluid viscosity Jl as Kij') = (kjJJl)(·).

In the constitutive equations (3) and (5), both solid and fluid phases are considered
compressible, containing distinctive stiffness values that should be determined exper­
imentally. However, this general form of constitutive equations may be simplified for
practical purposes. It is generally assumed that the unjacketed volume and pore stiffness
take the same value as solid grain stiffness K., Le. K~ = K~ = K s• Also, if the compressibility
of solid grain is small compared with that of solid skeleton, we have' = I and '1 = ¢rIKr.
If the compressibility of the pore fluid is neglected, we further have 1J = 0, implying that
the pore pressure does not make any contribution to the fluid mass change. We can see
that constants' and '1 are always positive; the first one's upper bound is I and the second
one's lower bound is O. Note also that as the stiffness parameter Kr is used to characterize
the pore fluid, the fluid is then considered herei'1 as an elastic, inviscid material.

Finally, the boundary conditions are given by

Ui')6(X, t) = Vi')6(X, t) on rt')

l1ij')'(X, t) nj(x) = S1.)R(X, t) on na
)

p(a),(x, t) = P(')'(x, t) on r~)

qia),(x, t) nj(x) = Q(a)6(x, t) on r~) (8)

with prescribed values of displacement Vi·)6, traction S1a)6, fluid pressure p.)r. and fluid flux
Q(o)<. The vector nj is the outward normal of the domain n on the surface na) or qa).

Equations (2), (3), (5), (7) and (8), along with initial conditions for Uia)R and p(a)6,
define a well posed initial boundary value problem that, however, is difficult to solve if the
number of cells is great. The most important computational task arises from the fact that
the domain under consideration has two very different length scales. In order to make the
problem numerically manageable, we have to distinguish two length scales first and seek
some methods to eliminate the dependence of the smaller length scale. This may be
accomplished by a multivariable representation.

Let us consider the cell that, as described above, consists of a complete region of
material 1 and two adjacent half regions of material 2 (Fig. 2). Within the cell, all the field
quantities continue to depend upon the spatial position in the macrocoordinate system x,
and they may also be seen as a dependent function of the spatial position in a micro­
coordinate system that may be established for the cell. The microcoordinate in the
periodicity direction Xl will be obtained through scaling XI by the periodicity e
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Fig. 2. Schematic view of hi-laminated porous media at the microscopic level.

(9)

The nondimensional coordinate Xl varies from -1/2 to 1/2 in a cell. Whereas the spatial
scaling is made, no temporal counterpart will be introduced. This implies that the elastic
characteristics of the filling fluid will be preserved. Once the length scaling change is made,
the original field variables expressed in eqns (2), (3), (5) and (7) can be transformed to
those in both macroscopic and microscopic coordinate systems:

1
m(o)F.(x X t) +q(O)F.(x x- t)· + - q(O)F.(x X t) - = 0, I, 1 ,1, '1 I I ,1, ,I

u(O)F.(x X t) = C(o) (x) (e(O)F.(x X t) + ! e(O)F.(x X t») - y(O) (x)p(»F.(x X t)f>u ,1 , ukl kl, 1 , I kl ,1,":l , I, U

(10)

where

and the subindex T denotes the microcoordinate Xl. Note that under the multivariable
transformation, all the field quantities depend not only on the macrocoordinate but also
on the microcoordinate. This, however, is not true for the material properties such as
Cij/1h KijO) , (0) and ,,(0), implying that they are assumed to be homogeneous in each region of
the cell. Note also that the initial and boundary conditions also become dependent on both
coordinate systems.

With the multiscale representation, the spatial derivative of field variables is split into
two parts, macroscopic and microscopic. This is very helpful for the volume average
procedure as we will see in the following section.
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3. MIXTURE ANALYSIS OF HI-LAMINATED MEDIA

The micro-dependence of field quantities may be eliminated by following a volume
average procedure. An average quantity'" is defined as

,1,(') (x t) == < ./,(')f. > = _1_ f. .I,(')f. (x X t) dx
,+" '+' ",«(X) 'Y ,I, I,

'f' v(ct)

(II)

in which'" represents one of the following quantities: U i, aij' p, q or m. ¢(,) is the volume
fraction and v(') is the microdomain for each phase. The symbol < > means intrinsic
volume averaging.

The volume average, as defined by eqn (II), can be used not only to calculate average
values offield variables, but also to obtain average motion equations. This procedure starts
from eqns (10)1 and (l0h- As a result of the multiscale representation described in the
previous section, the micro- and macro-dependencies of spatial derivatives have been
separated in these equations. For example, in eqn (10) .. the first term is exclusively related
to the derivative with respect to the macrocoordinate, and the second term, to the derivative
with respect to the microcoordinate. Consequently, for the first term in eqn (10), the average
of the derivative is simply the derivative of the average. Therefore, the average procedure
can be carried out in a relatively simple way. This is the main advantage of the multiscale
representation employed in the last section. Using this line of reasoning and applying eqn
(II), the average forms of eqns (10)[ and (lOh become

¢(')alf.j+( -ly+lU; = 0

¢(')ri1(') +¢(,) qi~l +(- IY+ 1q = 0,

where two interaction quantities ib; and q are introduced:

I
it;(x,t) =/(a\'('(x1 = ¢(1)/2)-a\'('(xI = -¢(I)/2))

I
q(x,t) =/(q\')f.(x1 = ¢(I)/2)-q\')f.(x 1 = -¢(I)/2)).

(12)

(13)

These two quantities measure transverse stresses and transverse flux along the interfacial
plane between the two constituents. They are macro-dependent quantities but represent the
microstructural features of the problem. In defining eqn (13), it is assumed that the trans­
verse stresses and flux are continuous across the interfacial area, so the terms labeled (Q()
on the right-hand side of eqn (13) may be evaluated for any value of Q(. In this work, it; and
q are called microstress and microflux, respectively, due to their resemblance with those
microquantities introduced by Mindlin [see, for example, Bedford and Drumheller (1983)]
in his continuum theory with microstructure.

Likewise, the average constitutive equations are obtained from eqns (10)3-(10)5 as

a&') = CW,eW +(-IY+ I CWI Uk/¢(') -(')p(')()ij

m(') = (')eW +(-IY+ 1(')U, /¢(,) +17(')p(')

(14)

where the average deformation tensor is defined by

In eqn (14) two new kinematic quantities appear, defined by



3394 X. Li

- - I, (")'._U,(X, t) - ~i (Ui' C(x 1 = ¢( 1) /2) - uj')' (X I = - ¢(I) /2))

I
P(x, t) = 1(pl»'C~ 1 = ¢(I) /2) - p(»'(;~ 1 = - ¢(I) /2)). (15)

iii and p measure the differences between interfacial displacements and interfacial pore
pressures, respectively, and are macro-dependent quantities, just like ai and lj, but they
are all closely related to the microstructure. iii and p are called microdisplacement and
micropressure, respectively. Finally, in the average context, the boundary conditions are
defined by

uj» = U},) onn»

(J}j) nj = Sj') onn»

i» = P(» onq»

qj» ni = Q(') onq». (16)

The motion equations (12), constitutive equations (14) and boundary conditions (16),
along with initial conditions for kinematic quantities uj» ,p(a), iii and p, define a well posed
initial boundary problem for a homogeneous mixture. It is recalled that the original problem
is nonhomogeneous because of the presence of two distinct periodic layers. However, the
nonhomogeneity of the problem has been removed by an averaging procedure and a
nonhomogeneous medium is represented now by an equivalent homogeneous one. Never­
theless, our task in the present work is far from being completed because new quantities
like ail ij, iii and p, found in eqns (12) and (14), are as yet unknown. In order to find
expressions for these quantities, we need to know the response of each cell at the micro­
structural level.

One efficient way to construct a solution for the cell is asymptotic analysis. If the
nondimensional measure of the cell e is small compared to one, the field variables may be
expressed as asymptotic series as follows:

(17)

where t/J represents Uil (Jij, qil P or m. Applying eqn (17) in eqn (10) and equating terms of
equal e powers, we obtain a series of equations that define the micro initial boundary value
problems. For the lowest order l/e2

, it is given that

and for I/e,

(J\~~O).1 = 0, q\'?O).1 = °

(18)

(,) _ C(» I (a) + (» + ~ (» + ~ (,) ) y(,) (a) ~(Jji(O) - jik/2 UI(O).k Uk(O).1 UkI U/(I).1 U/lUk(l).T -." PlO) Uij

qj(6) = -Kjj)(p~M.j+lJjlpm.1)

m~M = (') (uk'(l»,k +U\(\ ).\) _1](a)p~M· (19)

Now the solutions for the micro problems can be found by solving a series of micro
subproblems and superimposing the subsolutions.

The solutions for the micro initial boundary problems may be carried out by consider­
ing, for all the field quantities, both periodicity and compatibility conditions. Solutions for
the first micro boundary value problem described by the set of eqns (18) are obvious:
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(20)

where ljJ represents U i and p. Equation (20) shows that the displacement and the pore
pressure of the lowest order, ulrd) and plM, depend only upon the macrocoordinate system
x and the time t.

For solving the problem of order 118, it is interesting to observe that the original flow­
deformation coupled problem has been decoupled, that is, ul(l) and pm can be solved
separately, either by eqns (19)1 and (19h or (19h and (19)4' respectively. This is due to the
fact that the spatial variation of the deformation of solid skeleton is always higher than
that of the pore pressure by one order. Another advantageous result is that, if terms of first
order are retained, the steady-state flow problem is the only one that must be solved. The
solution for a more complicated transient flow problem can be avoided because the term
related to the rate of change of fluid mass m(') does not appear in eqn (19h. These results
are quite fortunate because many closed-form solutions for elasticity and steady-state
conduction problems are available and can be combined to furnish final solutions to micro
problems.

With respect to the solution for the displacement field, as suggested by eqns (19)1 and
(19h ulrl) is proportional to the gradient ofdisplacement of the lowest order u~rd)'j' Although
the exact field for ul(l) can be obtained, the expression is quite lengthy. Murakami and
Hegemier (1989) suggest, alternatively, the use of a trial field instead of the exact one. In
the context of this paper, the trial field for the displacement, denoted by al'), should fulfill
the following two requirements: its average should equal the mixture average ul') and, in
view of the definition (15) hal') should be related to ai • In taking these requirements into
account, we can propose the trial field for the displacement as follows:

where g!')(XI) is a linear function of XI

g(1 )(x I) = X1/<1>(1)

g(2)(Xt) = (sgn(xd/2-XI )/<1>(2)

(21)

(22)

for which sgn(x l ) = -1,0,1 for '\'1 < 0, = °and >0. The form of the functiong(') is shown
in Fig. 2. Similar trial fields for fluid pressure, stress and flux can be proposed as follows:

p(')(x, X h t) = pl'l(x, t) + [p(x, t) g(') (.\'r)

alj)(x,xr, t) = aij') (x, t)+[(5jTO'i(X, t)g!')(x l )

til') (x, x I, t) = q~') (x, t) + [(5iTQ(X, t) g!') (x I)' (23)

where (5jT = 1when) = 1and (5jT = 0 otherwise. Note that the same function g(') can be used
for all the trial fields.

Once the trial fields are constructed, a variational principle can be used to find new
equations. Murakami and Hegemier (1989) suggested the modified Reissner's variational
principle, because it can take into account the following special features of the medium:
the multiscale nature, discontinuity of the average field variables across the interfacial area,
and the variation of stress and flux. The principle, in the form of virtual work and for the
consolidation problem under consideration, is given in eqn (AI) of Appendix A. Equation
(AI) is formulated in terms of trial fields. There is a difference between the principle
presented in eqn (A 1) and that used by Murakami and Hegemier (1989). Here, the variation
of stress in all directions is included in contrast to the previous work where only the
variation in the transverse direction was considered. This slight modification has no physical
implication; it only allows for an easier algebraic task because taking variations in all
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directions can lead to obtaining the constitutive equations for all directions from the same
variational principle.

Applying the trial fields given in eqns (21) and (23) into eqn (A2), all the mixture
equations as well as boundary conditions can be obtained. To begin with, there are two
equilibrium equations now, one given in eqn (12)1 and the other taking the form

~ - + (2) (I) - 0120'1.1 0'11 -0'11 - . (24)

This equation establishes the relation between the transverse stresses and the microstress
vector. The appearance of the cell dimension I in the first term of eqn (24) clearly indicates
that this equation represents an equilibrium condition of higher order than that of eqn
(12)1> which is the one commonly established in continuum mechanics. On the other hand,
there are also two equations of mass conservation, one of them presented in eqn (l2h and
the other given by

(25)

with' = ~:>V~)'(~) and 11 = L>t>(~)11(~). It is noted that, in obtainingeqn (25), the constitutive
equation (5) was used to express the rate of fluid mass change. Equation (25) is an evolution
equation for the microdisplacement and the micropressure, which predicts the history of
higher-order terms during the consolidation process. On the other hand, two new consti­
tutive equations appear, also as a result of the variational principle (A2), which take the
forms

(26)

with

k is the average permeability in the direction normal to lamina.
Now we have a complete set of equations. The independent variables are the dis­

placement for each phase ul~), the microdisplacement a;, the pore pressure for each phase
p(~) and the micropressure p. In a three-dimensional problem, there are twelve variables. A
total of twelve equations come from eqns (12)" (24), (l2h and (25). Part of the boundary
conditions for the problem are defined in eqn (16). The rest, which are related to the
microquantities, are obtained from the variational principle (A2) :

~al = 0 onru

/2
-un = L4>(~)1 < g(~)S(~» onr"
12 J.I ~ I

~p = 0 onrp

p
12qnl = L4>(')I<g(~)Q(~) > onr".

, (27)
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Along with initial conditions for all basic variables, the problem is well posed and its
solution can be found. Due to the great number of basic variables involved in the model,
it seems that for most problems of practical interest a numerical solution is needed. This
may be accomplished by the finite element method or the boundary integral element
method. But it is worth emphasizing that the use of the finite element method in a homo­
genized medium is quite different from its use in the original heterogeneous material. The
mesh needed in the homogenized medium is considerably less fine because it is not necessary
to subdivide each periodic cell into finite elements. This is one of the attractive features of
the present model.

Because there are so many basic variables involved in the mixture equations, the model
developed in this section is indeed elaborate. However, its practical significance will be
clearer when it is specifically applied to a jointed medium in the following section. Never­
theless, it is interesting at this stage to indicate the general outcome of the model by
discussing which simplified models can come out of the more complicated theory. Compared
with an ordinary theory of continuous media, the present model is of a higher-order type
due to the fact that it considers: (I) the space and time variations of microdisplacement
and micropressure, and (2) the difference between phase displacements as well as between
phase pressures. Thus the model can be simplified by relaxing both considerations.

If the time and space variations of microdisplacement and micropressure vanish, i.e.
iii'j = O'P'j = 0, iii = °andp= 0, we can eliminate the microdisplacement and micropressure
from the list of basic variables. Although the detail of eliminating basic variables will be
given in the next section for jointed media, we outline the main stages here. In accepting
the above simplification, the microstress and microflux that appear in eqn (26) are no
longer independent but can be calculated from the displacement difference and pressure
difference uF) - uP) , p(2)_p(l). Substituting these relations into eqns (24) and (25) and using
eqns (14)1 and (14)3' the expressions for the microdisplacement and micropressure are
obtained in terms of phase displacements and phase pressures. Therefore, the mixture eqns
(12), resulting from a simple volume average procedure, form the motion equations and
no other high-order equilibrium equations are needed. Further simplification can be made
by equating the phase displacements and phase pressures, that is, ujl) = uF) = Ui and
p(l) = p(2) = p. In doing so, a simple consolidation theory with only four basic variables is
obtained. The coefficients that emerge from this simple model are the so-called effective
properties.

Between the simplest consolidation model and the one developed in this section, which
has the greatest degree of sophistication, there are a total of five intermediate models. Each
model has different basic variables. In order of increasing simplification, we will give the
list of basic variables in each of the seven models. In what follows, it is evaluated for iJ( = I,
2 if a superindex (iJ() is used. The seven models have the following corresponding independent
variables: (l) uj'l, p(.), iii' P; (2) uj'), i'l, iii; (3) uj'), pC'>, p; (4) uj'), p('); (5) uj·), p; (6) ui,
p('); (7) U;, p. As can be seen, there are a number of alternatives to model the same bi­
laminated porous media. For a given practical problem, it seems difficult to assess a priori
which of the possible models is the best. It may be more reliable to implement first the most
complicated model and then to determine the most appropriate degree of sophistication.
In the next section, a theory for jointed media will be studied. In the context of the family
of models discussed above, it corresponds to model 6, which has five basic variables, u i , p(1)

and p(2).

4. MIXTURE EQUATIONS FOR JOINTED SATURATED POROUS MEDIA

Now we concentrate on a special case of the general bi-Iaminated saturated porous
media: jointed saturated porous media (see Fig. 3). The material denoted by the superindex
2 will be referred henceforth to as the intact material, and the material labeled by I as the
joint. Although the general framework established in the last section can directly be applied
to the jointed medium, some features are worthy of special consideration.

To begin with, the hydraulic characteristics of the joint and the intact material are very
different; the permeability of the joint may be higher than that of the intact material by
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Fig. 3. Schematic view of jointed porous media at the microscopic level.

some orders of magnitude. Consequently a roughly averaged property does not reflect the
true flow behavior, and distinction between the phase fluid pressures must be made in such
a way that filling fluid follows two distinct flow paths. In order to facilitate the discussion,
the permeability tensor Klj) is assumed to have a transversely isotropic property

(28)

where K}.") and Ki") are components in the directions normal and parallel to the layering. By
adopting the assumption P, i = 0, we have from eqn (26h that

(29)

By using the above expression and eqn (l4h, together with the assumptions abk = P= 0,
we have from eqn (25) the expressions for P:

I
P- = - (K(2)p(2) -K(I)p(1)d

3
n.1 n,l, (30)

where d3 is defined in Appendix B. On the right-hand side of the above equation, K~2)p,)2)

and K~1)p,)I) represent the average fluxes in the normal direction of lamina in pores and
joint, respectively, So by the assumption that the micropressure P does not vary spatially,
the normal flux difference between both phases remains uniform in space,

Generally, the stiffness of the joint is lower than that of the intact material, but this
stiffness difference in the materials is not as relevant as the permeability difference. More­
over, as the volume fraction of the joint approaches zero, ¢(I) :::::: 0, and the joint is embedded
in the intact medium, the macroscopically averaged deformation is mainly due to that of
the intact material. Taking into account these special features, the mixture can be seen as a
composite with average effective properties, without the necessity to make a distinction
between the deformations in both constituents. Thus, if aij and eij are the average stress and
strain of the mixture, we have the average equilibrium equation

aji.} = ° (31)

and the strain occurring in the intact material may be approximately equal to the average,



Mixture modeling of jointed fluid-saturated porous media 3399

i.e. eijl) ~ eij' If the isotropic property is assumed for the intact material, eqn (14), may be
replaced by

(32)

with Je and G being Lame's elastic constants. On the other hand, the joint behavior is
defined by a relation between the relative displacement lUi and joint traction oW so eqn
(14), may be evaluated for the joint material as follows:

(33)

Dij is the joint stiffness (Goodman et aI., 1968). Although no difficult arises if nonlinear
stiffness is introduced at this stage, it is preferable, for the sake of clarity, to assume an
elastic joint property. To further simplify the presentation, a transversely isotropic joint
behavior is assumed

(34)

with Dn and Dt as normal and tangent joint stiffnesses. By making the assumptions
u,,; = u;, , = 0 and uP) = U~2), together with the previous hypothesis that p,; = 0, eqn (24),
results in l'ij " = O. Under these circumstances we have, starting from eqn (24), that
oW = oW. This equilibrium condition, combined with eqns (32) and (33), leads to the
following expressions for u; :

u, = (Jeekk+2Gell +((l)p(l) _(2)p(2»/d,

U2 = 2Gedd2, U3 = 2GeIJid2,

where d, and d2 are given in Appendix B.
Moreover, the fluid mass change equation (14h becomes

<jJ(')m(') = ((l)u, +'1(')p(l)

<jJ(2)m(2) = (2)ekk-((2)ul +'1(2)p(2).

(35)

(36)

These equations indicate that there are three sources contributing to the fluid mass change
in the intact material: solid skeleton deformation, pore pressure and relative displacement
of joint. In the joint, only the relative displacement and joint pressure induce the mass
change. It is obvious from eqn (36) that a positive relative displacement-joint open­
induces an increase of joint fluid mass but a decrease of pore fluid mass.

At this point all the necessary expressions for the microquantities are obtained. By
inserting eqns (35), (29) and (30) in eqns (32), (33), (36) and (14)2' we obtain the final
constitutive equation whose compact form is given by

2

{a} = [C] {e} - L {P}(')P<·)
.~,

<jJ(.) m(·) = {,B} (.)T {e} + !X(.)P<,) -!XC (b 1'p(2) +b2.P('»

<jJ(·){qV·) = -[K](·){Op}(·)-[KC
] (b t .{Op}(2)+b2,{Op}(l»

in which it is defined that

(37)
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{O"} = [0",,,0"22,0"33, O"12,O"n, 0"3d
T

,

{e} [e'b e22, e33, 2e'2' 2en, 2e3,f,

{q} [Q"Q2,q3f

The material constants [C), {twa>, (X(a), (Xc, [K] and [KC
] are given in Appendix B.

In conclusion, the motion equations (31) and (l2)z, the constitutive equations (29)
and (37), appropriate initial and boundary conditions define the consolidation problem in
jointed saturated porous media. The basic variables are the displacement of solid skeleton,
pore pressure and joint pressure. Once the solution of the mixture equations is obtained,
the microstructural response may be recovered through eqns (21) and (23).

5. DISCUSSION

As stated in the Introduction, Aifantis and his co-workers (Wilson and Aifantis, 1982;
Beskos and Aifantis, 1986; Khaled et al., 1984) have developed a double porosity model
to study consolidation behavior in a jointed fluid-saturated porous medium. As it was
formulated within a different framework from the one used in the present work, it is
interesting to compare the results. To begin with, the equations of motion derived in the
two models are the same. The set of equations of motion consist of one equation of
linear momentum balance (31) and two equations of mass conservation (12)z, In the mass
conservation equations, terms expressing mass exchange between the intact material and
the joint appear, which are proportional to the fluid pressure difference.

The major difference between the two models is observed in the constitutive equations.
The stress-strain relation (37), is similar to those used in the previous model: the total
stress is proportional to the strain, the pore pressure and the joint pressure. The matrix [C)
given in eqns (B 1) and (B2) is the same as that proposed in the work of Murakami (1985).
In a limiting case where the joint stiffness is very high, the stiffness for intact material is
recovered. In contrast, when the stiffness of intact material is large compared with that of
the joint, the medium can be seen as an ensemble of rigid blocks. On the other hand,
whereas eqn (37), is totally consistent with those previously obtained, in the other two
constitutive equations, (37)z and (37)3' additional cross or coupling terms appear that are
not included in the previous model.

For the fluid mass change calculation, the cross coefficient aC
, included in the last term

of eqn (37)z, is not used in the previous work even in an improved version of the original
model (Beskos, 1990) or other new application models (Cho et a/., 1991; Elsworth and Bai,
1992). The coupling effect indicates that the fluid mass change of the intact material is
influenced not only by the pore pressure change but also by the joint pressure. In the same
way, the fluid mass change in the joint is affected by both pore and joint pressures. The
physical meaning behind this coupling effect is obvious. In the intact material, there are
two sources making contributions to its fluid mass change, pore fluid pressure change and
solid skeleton deformation; but the deformation is related, in turn, to the joint pressure,
which is indicated by eqn (35),. Thus, any joint pressure change induces fluid mass change
in the intact material. Conversely, any pore pressure change also causes fluid mass change
in the joint material. In addition, it is interesting to observe that there is a negative sign
before the cross term (Xc, meaning that the fluid pressure change in one material (intact or
joint) makes an opposite contribution to the fluid mass change in the other material (joint
or intact). This can also easily be understood. Consider for example the intact material;
with increasing pore pressure, the fluid mass content increases and the solid skeleton
expands. At the same time, the joint tends to close and the fluid mass content in the joint
decreases.

We can see that there are two key physical processes behind the macroscopic cross
phenomena: the fluid-deformation coupling in porous materials, and the stress continuity
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and displacement compatibility between the intact material and the joint. Both effects can
easily be visualized from the expression for a,C in eqn (B5). a,C is related to the stiffnesses of
both intact and joint materials through d l and to the deformation-pressure characteristics
through (I) and ((2). Quantitatively, a,C is of the same order as a.(I) and a,(2l, so it is not
insignificant. Returning to the model proposed by Aifantis and his co-workers, as it is based
on the phenomenological mixture theory, the structure of constitutive equations has to be
assumed a priori, so deciding what terms should be retained and what may be discarded is
somewhat arbitrary. Although the cross terms can easily be included in the phenom­
enological mixture theory, they have been ignored. The appearance of the missing cross
terms in the present work shows once again the advantage of a non-phenomenological
approach in which equations result from rigorous microstructural considerations.

In the Darcy-type equation (37h a cross term [/C"] that has not been included in the
previous works emerges. This term, which comes from the flux continuity condition along
the joint, indicates that the flux in one constituent is affected by pressure gradients of both
phases. Originally, Darcy's law was established for a porous medium with single porosity.
It is common practice to extend this law to treat multiphase flow [see, for example, Alder
and Brenner (1988)], expressing the proportionality between the flux of one phase and the
pressure gradient of the same phase. However, it has been pointed out (Alder and Brenner,
1988), without any theoretical or experimental justification, that cross terms may be
expected. The results in the present work can be seen as some of the possible theoretical
assessments on the subject. The cross terms emerge directly from the microstructural
continuity conditions so a complete Darcy's law should include them.

The present model provides a more complete theory than those previously developed.
In addition, the results offer an advantage for engineering use. The coefficients involved in
the model can directly be calculated from a priori known characteristics of the media. This
enhances the predictive capability of the model to a great extent. As pointed out above, the
mass exchange term lj expresses, at a microstructural level, the fluid flux across the joint in
the direction normal to the layering. As shown in eqn (29), lj is proportional to the
fluid pressure difference, just as suggested empirically by Warren and Root (1963). The
proportionality constant depends upon the average permeability in the normal direction of
lamina k, which is in agreement with the definition of lj. Further, a value of 12 appears in
the proportionality constant, which is consistent with other plate theories. As can also be
seen, q depends on the square of joint spacing I; the smaller I, the more mass exchange. In
the limiting case for which I approaches zero, in order that a finite mass exchange occurs,
the fluid pressures in both phases should be equal recovering a consolidation model with
single porosity. The mass exchange lj is not the only term including the joint spacing I. All
the mixture properties related to the deformation effects depend upon the spacing I, but
now to a lesser extent because the linear rather than quadratic term of I is included. 1­
dependence of the mixture is also relevant when one wants dynamic dispersion phenomena
to be accurately modeled (Murakami et al., 1981; Murakami, 1985; Murakami and
Hegemier, 1989; Murakami and Toledano, 1990).

The flow problem in a jointed saturated porous medium is of two-phase type. The
present theory is not sufficiently general to deal with any two-phase flow problem. The two­
flow problem considered here is the simplest one because the flow is miscible. One of the
characteristics of two miscible fluid-saturated porous media is that the deformation-pres­
sure coefficients are symmetric. This is certainly true, as can be seen from eqns (37)} and
(37h in which the same vector {/W~) appears in both equations. For a general immiscible
two-flow problem, where capillarity plays an important role, the symmetric structure
concerning the coefficients {{J} may be lost and a more general theory is required. More
details on this subject are found in Li and Li (1992) and Li (1994).

To close the discussion of constitutive equations, let us consider a limiting case in
which the fluid pressures take the same value, thus recovering a model for porous media
with single porosity. In this case we have from eqn (37) that

{a} = [C]{e}-{{J}p,m= {{JY{e}+a.p,{q} = -[/CHap} (38)
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with m = r. ¢IX)m l'>' un = r. un la), rJ. = r.:x l,) - 2:x", {q} = r. ¢I,){q} (,), and [K] = r. [K]I') +2
[KC

]. A series of effective properties for the mixture are obtained:

(39)

where k is given in eqn (26). Note that if the coefficients (II) and (12) are not mismatched,
the effective coefficients un and rJ. are defined only by the intact properties. The form of
permeability tensor [K] defined in eqn (39) is well known.

The methodology employed in the present work to obtain mixture equations is essen­
tially the same as developed in Murakami et al. (1981), Murakami (1985), Murakami and
Hegemier (1989) and Murakami and Toledano (1990). Such a mixture approach leads to
a higher-order theory. However, phenomenological mixture models generally do not include
terms of higher order. In order to obtain consistent results in both models, it is necessary
to eliminate the variables of higher order. This paper presents a hierarchy of models with
different degrees ofsophistication first and then establishes a procedure to develop simplified
theories by making pertinent assumptions about the quantities of higher order. This makes
the obtained model transparent because we are aware of hypotheses made in each stage of
development. For instance, for the widely used model ofconsolidation with double porosity,
we have to accept the assumptions that the flux difference in both constituents in the
direction normal to the layering is constant [eqn (30)] and the microdiffusion process is
discarded (p = 0).

6. CONCLUSIONS

In this study, motion and constitutive equations for a bi-Iaminated saturated porous
medium are formulated within the framework of non-phenomenological mixture theory.
Special attention is devoted to a fluid-saturated porous medium with a single joint system.
The method used to derive mixture equations is based on an asymptotic analysis of a
periodic structure with multiple scales. The Biot consolidation problem is originally coupled,
transient. The asymptotic analysis proposed here allows us to replace it by various
uncoupled, steady-state problems which are defined at the microscopic level. This is quite
encouraging because independent solutions for elasticity and conduction, that are well
known, can be combined in a straightforward way to furnish useful results.

A hierarchy ofbi-Iaminated models with different degrees ofsophistication is presented.
The model with the greatest degree of sophistication embraces eqns (12), (14), (24), (25)
and (26). By appropriate assumptions about the micro quantities, the model can be simpli­
fied. For the jointed media, the constitutive equations are derived in such a way that they
are consistent with those used in a phenomenological theory. The main results for the
jointed media are summarized in eqns (31), (12h, (29) and (37). Compared with previous
models, the motion equations are essentially the same but the constitutive equations are
very different except those describing solid skeleton deformation. The most distinctive
feature of the present model is that it provides some cross terms in the constitutive equations
for fluid mass change and flux. The fluid mass change (or flux) depends upon the fluid
pressure (or pressure gradient) in intact material as well as in joint material. Due to their
magnitudes, in most cases these cross terms cannot be ignored. Although these conclusions
are drawn from a special porous medium, their validity for other more complicated cases
such as random media is expected, because the physical processes behind the cross effects
always take place.

The novel results obtained here may have far-reaching consequences for future theor­
etical modeling and experimental programs in two-phase fluid-filled porous media. For
instance, the generally accepted Darcy's law for the porous medium with single porosity
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cannot directly be extended to that with double porosity. Special experimental difficulty
may arise when the cross conductivity coefficients must be determined directly. Also, the
cross terms related to the fluid mass change cannot be measured easily. Usual techniques
utilizing concepts of different time and geometrical scales may have to be modified. More
theoretical studies may provide some guidance on these questions.

The geometry of the problem treated in this paper is relatively simple. These results will
be extended to more complicated jointed media such as with continuous or discontinuous
staggered joints or random media. Also, the methodology developed in the present work
will be useful to study the diffusion-induced stress problem in composite materials with
grain boundaries.
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APPENDIX A: REISSNER'S VARIATIONAL PRINCIPLE FOR A BINARY MEDIUM

The modified Reissner's variational principle (Reissner, 1986) takes the following form of virtual work

f. [Lf (oaj.'!fJu') +op~~)4j') +MU') (eU·) - (C- 1)jpJM1~) H(')pi"'Okl»
Q Gl: r(2 l

+04j') (p,j') + (K- 1)jj)4)'»)dv+ ~L(-I)"f (oa?) fJ\7) +M\7) aj')
• A

SAS 31:24-F
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+t'5pl.J 4t'J +oqt') r)V\11 dsJdn = Ll~ J.", bpi') rill') dv}a

(AI)

where vi ll is the outward normal of the phase I on the interfacial area. The trial deformation tensor e1rl is defined
as

All the other quantities in eqn (AI) have been defined in Sections 2 and 3. After applying the Gauss's theorem to
eqn (AI), we finally have

Equation (A2) is used to derive all the mixture equations as well as boundary conditions.

APPENDIX B: CONSTITUTIVE EQUATIONS FOR THE JOINTED POROUS MEDIA

The mixture stiffness parameters are given by three tensors [C] and [CI:

(A2)

a b b 0 0 0

b c d 0 0 0

b d c ° ° °[C] =
0 0 0 f 0 0

(Bl)

0 0 0 0 G °0 ° 0 0 0 f
with

a = (l+2G)(I-()'+2G)/dd, b = ).(l-(A+2G)/dil

c = (l+2G)(1-)'/d) , d= l(l-A/d)

f= G(I-Gld2 ), (B2)

where

d, = lDn +A+2G. d~ = lD, +G, (B3)

The constants relating the pore pressure and total stress are given by two vectors {j1}m, {j1}(2):

{j1}m = C(1)[(,1,+2G)/d l ,l/d, •..l./d l ,O,O,OlT

{P}(2) = (12J[1-(A+2G)/dJ, I-J"jd), I-lid], 0, O,OlT.

The constants relating the fluid mass change and pore pressure are given by three scalars a(l), ce(2
) and aC

:

(B4)

(B5)

Finally, the hydraulic conductivity constants are given by three tensors, assuming a transversely isotropic case:
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where
2

d, = 1: K~a) /t/J(.).
a=l

Equation (B6) may be further reordered such that

where k is given in eqn (26).
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(B6)

(B7)

(B8)


